Cross-Platform Microarray Data Normalisation for Regulatory Network Inference
نویسندگان
چکیده
BACKGROUND Inferring Gene Regulatory Networks (GRNs) from time course microarray data suffers from the dimensionality problem created by the short length of available time series compared to the large number of genes in the network. To overcome this, data integration from diverse sources is mandatory. Microarray data from different sources and platforms are publicly available, but integration is not straightforward, due to platform and experimental differences. METHODS We analyse here different normalisation approaches for microarray data integration, in the context of reverse engineering of GRN quantitative models. We introduce two preprocessing approaches based on existing normalisation techniques and provide a comprehensive comparison of normalised datasets. CONCLUSIONS Results identify a method based on a combination of Loess normalisation and iterative K-means as best for time series normalisation for this problem.
منابع مشابه
Consensus and Meta-analysis regulatory networks for combining multiple microarray gene expression datasets
Microarray data is a key source of experimental data for modelling gene regulatory interactions from expression levels. With the rapid increase of publicly available microarray data comes the opportunity to produce regulatory network models based on multiple datasets. Such models are potentially more robust with greater confidence, and place less reliance on a single dataset. However, combining...
متن کاملBootstrap Inference for Network Construction with an Application to a Breast Cancer Microarray
Gaussian Graphical Models (GGMs) have been used to construct genetic regulatory networks where regularization techniques are widely used since the network inference usually falls into a high–dimension–low–sample–size scenario. Yet, finding the right amount of regularization can be challenging, especially in an unsupervised setting where traditional methods such as BIC or cross-validation often ...
متن کاملConsensus gene regulatory networks: combining multiple microarray gene expression datasets
In this paper we present a method for modelling gene regulatory networks by forming a consensus Bayesian network model from multiple microarray gene expression datasets. Our method is based on combining Bayesian network graph topologies and does not require any special pre-processing of the datasets, such as re-normalisation. We evaluate our method on a synthetic regulatory network and part of ...
متن کاملInference of gene regulatory networks using Bayesian network
It has been attempted to reveal regulatory information from microarray data using Bayesian network [1]. However, due to limitation of microarray, successful result is obtained only under a limited condition. For this reason, Bayesian network from combining microarray with biological knowledge was proposed [2]. In this paper, we proposed Bayesian network learned by genetic algorithm to infer gen...
متن کامل